1,981 research outputs found

    Continuous-time Diffusion Monte Carlo and the Quantum Dimer Model

    Full text link
    A continuous-time formulation of the Diffusion Monte Carlo method for lattice models is presented. In its simplest version, without the explicit use of trial wavefunctions for importance sampling, the method is an excellent tool for investigating quantum lattice models in parameter regions close to generalized Rokhsar-Kivelson points. This is illustrated by showing results for the quantum dimer model on both triangular and square lattices. The potential energy of two test monomers as a function of their separation is computed at zero temperature. The existence of deconfined monomers in the triangular lattice is confirmed. The method allows also the study of dynamic monomers. A finite fraction of dynamic monomers is found to destroy the confined phase on the square lattice when the hopping parameter increases beyond a finite critical value. The phase boundary between the monomer confined and deconfined phases is obtained.Comment: 4 pages, 4 figures, revtex; Added a figure showing the confinement/deconfinement phase boundary for the doped quantum dimer mode

    GENERATION OF ABELIAN MATRIX GROUPS FOR USE IN THE SCATTERING ALGEBRA

    Get PDF

    Field effect on surface states in a doped Mott-Insulator thin film

    Full text link
    Surface effects of a doped thin film made of a strongly correlated material are investigated both in the absence and presence of a perpendicular electric field. We use an inhomogeneous Gutzwiller approximation for a single band Hubbard model in order to describe correlation effects. For low doping, the bulk value of the quasiparticle weight is recovered exponentially deep into the slab, but with increasing doping, additional Friedel oscillations appear near the surface. We show that the inverse correlation length has a power-law dependence on the doping level. In the presence of an electrical field, considerable changes in the quasiparticle weight can be realized throughout the system. We observe a large difference (as large as five orders of magnitude) in the quasiparticle weight near the opposite sides of the slab. This effect can be significant in switching devices that use the surface states for transport

    ERGEBNISSE ĂśBER MATRIXALGORITHMEN ZUR LĂ–SUNG LINEARER UND NICHTLINEARER UNGLEICHHEITEN

    Get PDF

    Orbital degeneracy as a source of frustration in LiNiO2_2

    Full text link
    Motivated by the absence of cooperative Jahn-Teller effect and of magnetic ordering in LiNiO2_2, a layered oxide with triangular planes, we study a general spin-orbital model on the triangular lattice. A mean-field approach reveals the presence of several singlet phases between the SU(4) symmetric point and a ferromagnetic phase, a conclusion supported by exact diagonalizations of finite clusters. We argue that one of the phases, characterized by a large number of low-lying singlets associated to dimer coverings of the triangular lattice, could explain the properties of LiNiO2_2, while a ferro-orbital phase that lies nearby in parameter space leads to a new prediction for the magnetic properties of NaNiO2_2.Comment: 18 pages, 17 figure

    C Minor: a Semantic Publish/Subscribe Broker for the Internet of Musical Things

    Get PDF
    Semantic Web technologies are increasingly used in the Internet of Things due to their intrinsic propensity to foster interoperability among heterogenous devices and services. However, some of the IoT application domains have strict requirements in terms of timeliness of the exchanged messages, latency and support for constrained devices. An example of these domains is represented by the emerging area of the Internet of MusicalThings.InthispaperweproposeCMinor,aCoAP-based semantic publish/subscribe broker speci\ufb01cally designed to meet the requirements of Internet of Musical Things applications, but relevant for any IoT scenario. We assess its validity through a practical use case

    Quasiparticle spectral weights of Gutzwiller-projected high T_c superconductors

    Full text link
    We analyze the electronic Green's functions in the superconducting ground state of the t-J model using Gutzwiller-projected wave functions, and compare them to the conventional BCS form. Some of the properties of the BCS state are preserved by the projection: the total spectral weight is continuous around the quasiparticle node and approximately constant along the Fermi surface. On the other hand, the overall spectral weight is reduced by the projection with a momentum-dependent renormalization, and the projection produces electron-hole asymmetry in renormalization of the electron and hole spectral weights. The latter asymmetry leads to the bending of the effective Fermi surface which we define as the locus of equal electron and hole spectral weight.Comment: 6 pages, 5 figures; x-labels on Figs. 1 and 2 corrected, footnote on particle number corrected, references adde

    Asymmetry between the electron- and hole-doped Mott transition in the periodic Anderson model

    Full text link
    We study the doping driven Mott metal-insulator transition (MIT) in the periodic Anderson model set in the Mott-Hubbard regime. A striking asymmetry for electron or hole driven transitions is found. The electron doped MIT at larger U is similar to the one found in the single band Hubbard model, with a first order character due to coexistence of solutions. The hole doped MIT, in contrast, is second order and can be described as the delocalization of Zhang-Rice singlets.Comment: 18 pages, 19 figure

    Electric field response of strongly correlated one-dimensional metals: a Bethe-Ansatz density functional theory study

    Full text link
    We present a theoretical study on the response properties to an external electric field of strongly correlated one-dimensional metals. Our investigation is based on the recently developed Bethe-Ansatz local density approximation (BALDA) to the density functional theory formulation of the Hubbard model. This is capable of describing both Luttinger liquid and Mott-insulator correlations. The BALDA calculated values for the static linear polarizability are compared with those obtained by numerically accurate methods, such as exact (Lanczos) diagonalization and the density matrix renormalization group, over a broad range of parameters. In general BALDA linear polarizabilities are in good agreement with the exact results. The response of the exact exchange and correlation potential is found to point in the same direction of the perturbing potential. This is well reproduced by the BALDA approach, although the fine details depend on the specific parameterization for the local approximation. Finally we provide a numerical proof for the non-locality of the exact exchange and correlation functional.Comment: 8 pages and 8 figure

    Evolution of the single-hole spectral function across a quantum phase transition in the anisotropic-triangular-lattice antiferromagnet

    Full text link
    We study the evolution of the single-hole spectral function when the ground state of the anisotropic-triangular-lattice antiferromagnet changes from the incommensurate magnetically-ordered phase to the spin-liquid state. In order to describe both of the ground states on equal footing, we use the large-N approach where the transition between these two phases can be obtained by controlling the quantum fluctuations via an 'effective' spin magnitude. Adding a hole into these ground states is described by a t-J type model in the slave-fermion representation. Implications of our results to possible future ARPES experiments on insulating frustrated magnets, especially Cs2_2CuCl4_4, are discussed.Comment: 8 pages, 7 figure
    • …
    corecore